
> #Digits:=16:
> with(avtbslib): 

#assume(0<s):assume(0<e):assume(0<t):assume(0<v): #assume(0<r): 
#with(RealDomain): 
#assume(0<=d): # dividend 

Collector's data with a short hand to evaluate for them
> valCollector :=  

  proc(x,td) evalf(eval(x,[S=100.0, K=100, t=1.0, r=0.06, v=0.30, d=7.0, 
tau=td])) end proc;

valCollector := 

proc( ) end proc,x td ( )evalf ( )eval ,x [ ], , , , , , = S 100.0  = K 100  = t 1.0  = r 0.06  = v 0.30  = d 7.0  = τ td
Alan Lewis suggests the following solution
> # the usual transition density 

p:= (S,K,t,r,v) -> diffN(dTwo(S,K,t,r,v))/K/v/sqrt(t): p(s,e,t,r,v);
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> # Alan's solution 

kern:= p(S,S1,tau,r,v)*BSCall(S1-d,K,t-tau,r,v): 
call:='exp(-r*tau)*int(p(S,S1,tau,r,v)*BSCall(S1-d,K,t-tau,r,v),S1=d..infinit
y)';
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Let us test it. First look what happens, if the dividend is payed in almost 1 
year:
> valCollector(call,0.99);

11.57961537

This is (up to digits) the result given by Alan Lewis.

Now the case, when the dividend is coming up soon:
> valCollector(call,0.01);

0.3119367191 10-43

This is a crazy result.
And Alan adviced me to integrate more carefully since the program might have 
problems with the peak if S and S1 are close:
> kernNum:=unapply(valCollector(kern,0.01), S1): 

'limit(kernNum(x),x=0)'=limit(kernNum(x),x=0); 
plot(kernNum(x),x=7..200);

 = lim
 → x 0

( )kernNum x 0.



So more carefully: integrate around the peak and handle the tails extra
> # determine the peak: here it should be around the peak of p, ie for dTwo = 
0 
xp:=solve(dTwo(S,S1,t,r,v)=0,S1); #diff(kernNum(x),x): 
xp:=fsolve(%,x=100..2*100);

 := xp
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> xp:=valCollector(xp,0.01); 
yp:=kernNum(xp);

 := xp 101.5113065

 := yp 1.313820973
> x0:=fsolve(kernNum(x)=yp*2^(-16),x,0..xp); 
x1:=solve(ln(x/xp)=-ln(x0/xp),x); # x1 := xp^2/x0

 := x0 87.16766455

 := x1 118.2152281
If S1 becomes very large the Call with strike S1 in the kernel goes to 0 and 
the probability as well: it contributes almost nothing
to the integral, the tail can be cut off. Find a compromise to do it soon, but 



to the integral, the tail can be cut off. Find a compromise to do it soon, but 
not at cost of exactness. I am to lazy for estimating, 
Alan suggests: 
> S*exp(n*v*sqrt(t)): eval(%, n= 16): valCollector(%,0.01): 
smax:=%; 

 := smax 12151.04175
and indeed
> int(kernNum(S1),S1=smax..smax+(2^16)^2);

0.
Now do the example again
> exp(-r*tau)* 
 (evalf(Int(kernNum(z),z=7..x0)) 
 + evalf(Int(kernNum(z),z=x0..x1)) 
 + evalf(Int(kernNum(z),z=x1..smax))): 
valCollector(%,0.01);

10.59143844
which is ok: i did work with 10 digits of exactness, using 16 i get 
10.59143873835987 and it needs some time.
> 


