
> #Digits:=16:
> with(avtbslib):

#assume(0<s):assume(0<e):assume(0<t):assume(0<v): #assume(0<r):
#with(RealDomain):
#assume(0<=d): # dividend

Collector's data with a short hand to evaluate for them
> valCollector :=

 proc(x,td) evalf(eval(x,[S=100.0, K=100, t=1.0, r=0.06, v=0.30, d=7.0,
tau=td])) end proc;

valCollector :=

proc() end proc,x td ()evalf ()eval ,x [], , , , , , = S 100.0 = K 100 = t 1.0 = r 0.06 = v 0.30 = d 7.0 = τ td
Alan Lewis suggests the following solution
> # the usual transition density

p:= (S,K,t,r,v) -> diffN(dTwo(S,K,t,r,v))/K/v/sqrt(t): p(s,e,t,r,v);

1

2

e















− / 1 2













 −

 +






ln

s

e
r t

v t

v t

2

2

2

π e v t
> # Alan's solution

kern:= p(S,S1,tau,r,v)*BSCall(S1-d,K,t-tau,r,v):
call:='exp(-r*tau)*int(p(S,S1,tau,r,v)*BSCall(S1-d,K,t-tau,r,v),S1=d..infinit
y)';

 := call e
()−r τ

d
⌠
⌡

d

∞

()p , , , ,S S1 τ r v ()BSCall , , , , − S1 d K − t τ r v S1

Let us test it. First look what happens, if the dividend is payed in almost 1
year:
> valCollector(call,0.99);

11.57961537

This is (up to digits) the result given by Alan Lewis.

Now the case, when the dividend is coming up soon:
> valCollector(call,0.01);

0.3119367191 10-43

This is a crazy result.
And Alan adviced me to integrate more carefully since the program might have
problems with the peak if S and S1 are close:
> kernNum:=unapply(valCollector(kern,0.01), S1):

'limit(kernNum(x),x=0)'=limit(kernNum(x),x=0);
plot(kernNum(x),x=7..200);

 = lim
 → x 0

()kernNum x 0.

So more carefully: integrate around the peak and handle the tails extra
> # determine the peak: here it should be around the peak of p, ie for dTwo =
0
xp:=solve(dTwo(S,S1,t,r,v)=0,S1); #diff(kernNum(x),x):
xp:=fsolve(%,x=100..2*100);

 := xp
S

e
()− + r t / 1 2 v

2
t

> xp:=valCollector(xp,0.01);
yp:=kernNum(xp);

 := xp 101.5113065

 := yp 1.313820973
> x0:=fsolve(kernNum(x)=yp*2^(-16),x,0..xp);
x1:=solve(ln(x/xp)=-ln(x0/xp),x); # x1 := xp^2/x0

 := x0 87.16766455

 := x1 118.2152281
If S1 becomes very large the Call with strike S1 in the kernel goes to 0 and
the probability as well: it contributes almost nothing
to the integral, the tail can be cut off. Find a compromise to do it soon, but

to the integral, the tail can be cut off. Find a compromise to do it soon, but
not at cost of exactness. I am to lazy for estimating,
Alan suggests:
> S*exp(n*v*sqrt(t)): eval(%, n= 16): valCollector(%,0.01):
smax:=%;

 := smax 12151.04175
and indeed
> int(kernNum(S1),S1=smax..smax+(2^16)^2);

0.
Now do the example again
> exp(-r*tau)*
 (evalf(Int(kernNum(z),z=7..x0))
 + evalf(Int(kernNum(z),z=x0..x1))
 + evalf(Int(kernNum(z),z=x1..smax))):
valCollector(%,0.01);

10.59143844
which is ok: i did work with 10 digits of exactness, using 16 i get
10.59143873835987 and it needs some time.
>

