Cauchy's integral formula and using it to compute the regularized hypergeometric function

```
> restart; interface(version);
    with(Student[Calculus1]):
    Digits:=18;
    unprotect(gamma): gamma:='gamma': # else it is Euler's constant 0.577... and protected against
    changing it
```

Classic Worksheet Interface, Maple 12.02, Windows, Dec 102008 Build ID 377066

$$
\text { Digits }:=18
$$

Let be γ a closed curve in the complex plane, defined on an interval $[a, \ldots, b], \gamma(a)=\gamma(b)$. Then the integral along γ over f is defined as

```
>'Int(f(t), t =`gamma` .. ``) = Int(f(gamma(t))*D(gamma)(t), t = a . . b)';
```

$$
\int_{\gamma} f(t) d t=\int_{a}^{b} f(\gamma(t)) D(\gamma)(t) d t
$$

Cauchy's integral formula states, that for a holomorphic function under certain conditions one has

$$
2 \operatorname{II} \pi(z 0)=\int_{\gamma} \frac{f(z)}{z-z 0} d z
$$

$$
=\int_{a}^{b} \frac{f(\gamma(t)) D(\gamma)(t)}{\gamma(t)-z 0} d t
$$

If $\gamma:=t \rightarrow \operatorname{radius} e^{(2 I \pi t)}+$ center is a circle, $z 0$ lies inside and f is holomorphic on that open disk then the conditions are satisfied.
Here the factor 2 I π occures on both sides and the formula reads as

For the special choice $z 0=$ center the formula simplifies even more, since $\left.\frac{f(\gamma(t))(\gamma(t)-\operatorname{center})}{\gamma(t)-z 0}\right|_{z 0=\operatorname{center}}=f(\gamma(t))$ since terms cancel out: [> 'f(center) = Int (f(gamma(t)), t=0..1)';

$$
\mathrm{f}(\text { center })=\int_{0}^{1} \mathrm{f}(\gamma(\mathrm{t})) \mathrm{dt}
$$

That is a (complex valued) integral on the unit interval, one can approximate it by the trapezoid method, here 8 steps are used as an example.

```
> nSteps:=8;
    'nSteps*ApproximateInt(f(gamma(t)), t=0..1, iterations = 1, partition = nSteps, output=sum,
    method=trapezoid)':
    'eval(%, z0=center)':
    TrapezSum:=value (%);
```

TrapezSum $:=f($ radius + center $)+f\left(\operatorname{radius}\left(\frac{\sqrt{2}}{2}+\frac{1}{2} I \sqrt{2}\right)+\operatorname{centeps}:=8, f(\right.$ radius $I+$ center $)+f\left(\operatorname{radius}\left(-\frac{\sqrt{2}}{2}+\frac{1}{2} I \sqrt{2}\right)+\right.$ center $)$

$$
+\mathrm{f}(- \text { radius }+ \text { center })+\mathrm{f}\left(\operatorname{radius}\left(-\frac{\sqrt{2}}{2}-\frac{1}{2} \mathrm{I} \sqrt{2}\right)+\text { center }\right)+\mathrm{f}(- \text { radius } \mathrm{I}+\text { center })+\mathrm{f}\left(\operatorname{radius}\left(\frac{\sqrt{2}}{2}-\frac{1}{2} \mathrm{I} \sqrt{2}\right)+\text { center }\right)
$$

Then $f($ center $)$ is numerical approximated by the formula
$\left[>\right.$ 'f(center)' = 'TrapezSum/nSteps'; $\quad f($ center $)=\frac{\text { TrapezSum }}{n S t e p s}$
That means: take the unit roots (scaled onto the circle), evaluate f in that points and take the average - then numerical one gets $f($ center).Simple example

For $f=\exp$ and a point zTst in the complex plane take a circle of radius $1 / 256$ to compute $\mathrm{e}^{\mathrm{zTst}}$ - just to see how large the errors are:
[> zTst: $=2.0001+1.001 *$ I;
tstCircle:= [center = zTst, radius=1/256];

$$
\text { zTst }:=2.0001+1.001 \mathrm{I}
$$

tstCircle $:=\left[\right.$ center $=2.0001+1.001 \mathrm{I}$, radius $\left.=\frac{1}{256}\right]$
> 'exp(zTst)' = '1/nSteps*eval (eval(eval (TrapezSum, tstCircle), f =exp), z0=zTst)'; ; evalf(\%);
'error (absolute, relative) = abs(lhs(\%) -rhs(\%)), abs(1 -rhs(\%)/lhs(\%));
$\mathbf{e}^{\mathrm{zTst}}=\frac{\operatorname{eval(\text {TrapezSum,tstCircle)})|\mathrm {f}=\operatorname {exp}|\mathrm {z}0=\mathrm {zTst}}}{\text { nSteps }}$
$3.98650300737221150+6.22228772457518097 \mathrm{I}=3.98650300737221149+6.22228772457518097 \mathrm{I}$
error $($ absolute, relative $)=0.110^{-16}, 0.15160101230851252610^{-17}$
If errors would be larger then one could increase the number of steps (adaptively).

\square Application: regularization for the hypergeometric 2F1

The function $\frac{\text { hypergeom }([a, b],[c], z)}{\Gamma(c)}$ is analytic in its parameters (for fixed and admissible z, c.f. Lebedev's book on special functions for a proof) and called the regularization. However Maple can not compute it, if c is a negative integer.

One has the following fact (see Abramowitz \& Stegun, 15.1.2, p.556):

Check that by choosing some test data for $\mathrm{a}, \mathrm{b}, \mathrm{z}$ while for c some negative integer taken:
> cTst:=-3.0;
tstData:=[a=0.1, $b=-2.3, z=1.1+1.3 * I] ;$
cTst := -3.0

$$
\text { tstData }:=[\mathrm{a}=0.1, \mathrm{~b}=-2.3, \mathrm{z}=1.1+1.3 \mathrm{I}]
$$

Maple can not calculate the value directly, not even numerically:
> eval(hypergeom([a,b],[c],z)/GAMMA(c), tstData): fTst:=unapply (\%, c);

$$
\mathrm{fTst}:=\mathrm{c} \rightarrow \frac{\text { hypergeom }([-2.3,0.1],[\mathrm{c}], 1.1+1.3 \mathrm{I})}{\Gamma(\mathrm{c})}
$$

[> 'fTst(cTst)': '\%'=\%;

$$
\mathrm{fTst}(\mathrm{cTst})=\text { Float }(\text { undefined })+\text { Float }(\text { undefined }) \mathrm{I}
$$

However the method from above works:

```
> tstCircle:= [center = cTst, radius=1/256];
    ``;
    'eval(1/nSteps*TrapezSum, tstCircle)';
    eval(%, f =fTst):
    eval(%, z0 = cTst):
    ``=evalf(%);
    ``;
    'eval(limF(a,b,cTst,z), tstData)'; evalf(%):
    ``=%;
```

 tstCircle \(:=\left[\right.\) center \(=-3.0\), radius \(\left.=\frac{1}{256}\right]\)
 eval \(\left(\frac{\text { TrapezSum }}{\text { nSteps }}\right.\), tstCircle \()\)
 \(=-0.118486240610449468+0.0546427031746235087 \mathrm{I}\)
 eval(\(\operatorname{limF}(\mathrm{a}, \mathrm{b}, \mathrm{cTst}, \mathrm{z})\), tstData \()\)
 \(=-0.118486240610449467+0.0546427031746235088 \mathrm{I}\)
 Note that this also works, if one is not exactly in such a critical point, but only close to it (and a direct method would possibly lead to large numerical errors in usual precision).

