Evaluating the hypergeometric function 2F1 using a quadratic transformation due to Potts and Snow

Reference:

Peter John Potts: Computable Real Arithmetic Using Linear Fractional Transformations, Report, Department of Computing, Imperial College of Science, Technology and Medicine, London, (June-1996). URL: http://citeseer.ist.psu.edu/potts96computable.html.

```
> restart; interface(version); Digits:=14:
    myFont:=[COURIER,10]:
    myPlotDefault:=
        thickness =0, font=myFont, axesfont=myFont,labelfont=myFont,titlefont=myFont, symbolsize=8:
                Classic Worksheet Interface, Maple 12.02, Windows, Dec 10 2008 Build ID }37706
```

We take the following quadratic transformation (which is as in Abramowitz \& Stegun, 15.3.23, p. 560):

```
> Snow:= z -> (sqrt(1-z) - 1)/(sqrt(1-z) + 1);
    - ';
    w =Snow (z);
    z = solve (\%, z);
```

$$
\text { Snow }:=z \rightarrow \frac{\sqrt{1-z}-1}{\sqrt{1-z}+1}
$$

$$
\begin{aligned}
& \mathrm{w}=\frac{\sqrt{1-\mathrm{z}}-1}{\sqrt{1-\mathrm{z}}+1} \\
& \mathrm{z}=-\frac{4 \mathrm{w}}{(\mathrm{w}-1)^{2}}
\end{aligned}
$$

On p. 21 Potts refers to the book "Hypergeometric and Legendre Functions with Applications" (1952) by Chester Snow for the following 3 term recursion (however I was not able to locate it in the given reference, so I guess Potts invested some work here ... calling it Snow-Potts sound a bit silly), valid in the cut plane:

```
> hypergeom([a,b],[c],z) = (1-w)^a*Sum(h(n)*W^n, n=0..infinity);
    ``;
    h(0) = 1, h(1) = 2*a/c*(c-2*b);
    h(n+2)=(n+2*a)*(n+2*a+1-c)/(n+2)/(n+1+c)*h(n)+2*(c-2*b)*(n+1+a)*h(n+1)/(n+2)/(n+1+c);
        hypergeom([a,b], [c], z) = (1-w) a( }\mp@subsup{\sum}{n=0}{\infty}h(n)\mp@subsup{w}{}{n}
        h(0)=1,h(1)=\frac{2a(c-2b)}{c}
        h(n+2)=\frac{(n+2a)(n+2a+1-c)h(n)}{(n+2)(n+1+c)}+\frac{2(c-2b)(n+1+a)h(n+1)}{(n+2)(n+1+c)}
```

 That series converges for \(|w|<1\) (if \(z\) is purely real, then \(|\operatorname{Snow}(z)|=1\)).
 I use that series, if \(|\mathrm{w}|\) is not too large: the threshold will \(\mathrm{SO}=8 / 9\), see below, though I try to keep it below \(1 / 2\).
 Let us look at the results of that quadratic transform
[> abs(Snow(z)); r*exp(I*phi):
$\left|\frac{\sqrt{1-z}-1}{\sqrt{1-z}+1}\right|$
$>\operatorname{plot} 3 \mathrm{~d}\left(\mathrm{abs}\left(\operatorname{Snow}\left(r^{*} \exp (I * \mathrm{phi})\right)\right)\right.$, $r=0 \ldots 4, \mathrm{phi}=-\mathrm{Pi} / 2 \ldots$ Pi/2, myPlotDefault, axes=boxed, color $=$
"LightPink"):
plot3d(abs(Snow(r*exp(I*phi))), r=0 .. 4, phi=-Pi .. -Pi/2, axes=boxed, color =
"LightBlue"):
plot3d(abs(Snow(r*exp(I*phi))), r=0.. 4, phi=Pi/2..Pi, axes=boxed, tickmarks=[4,6,3], color =
"LightBlue"):
plots[display] (\%, \% \% , \% \% \% ,
title="abs(Snow(z)) for $z=r * \exp (I * p h i)$, red $=z$ in right, blue $=$ z in left half plane");

```
abs(Snow(z)) for z = r*exp(I*phi), red = z in right, blue = z in left half plane
```


So for $\operatorname{Re}(z)<0$ we always have $|\mathrm{w}|<=1 / 2, \mathrm{w}=$ Snow's variable, if we take $|z|<4$ and for those towards '-infinity' one we can take the transform 1/z: that finally can be done through a Taylor series for $2 F 1$ in 0 and that can be done well for a radius $=$ R0, where R0 $=0.9$ usually is fine.

One can even take the radius a bit larger in the left half plane using $r=40 / 9$:
$>1 / 2=$ 'abs(Snow(r*exp(I*Pi/2)))'; \%; evalc(\%) assuming (0<r): evala(\%);
r in $\{\operatorname{solve}(\%, r)\} ; \# e v a l f(\%) ;$

$$
\begin{gathered}
\frac{1}{2}=\left|\operatorname{Snow}\left(\mathrm{r} \mathbf{e}^{(1 / 2 \mathrm{I} \pi)}\right)\right| \\
\frac{1}{2}=\sqrt{\left.\frac{\sqrt{1-\mathrm{rI}}-1}{\sqrt{1-\mathrm{rI}}+1} \right\rvert\,} \\
\frac{-2 \sqrt{1+\mathrm{r}^{2}} \sqrt{2 \sqrt{1+\mathrm{r}^{2}}+2}-2 \sqrt{2 \sqrt{1+\mathrm{r}^{2}}+2}+4+\mathrm{r}^{2}+4 \sqrt{1+\mathrm{r}^{2}}}{\mathrm{r}^{2}}
\end{gathered}
$$

Note that through that 2F1 already can be computed for the complete left half plane (up to exceptional parameter constellations).
> R0:=9/10;

$$
\mathrm{R} 0:=\frac{9}{10}
$$

For the right half plane the maximum (radius $=a b s(z)$ fixed is achieved in purely real values and desiring $a b s(z)=1 / 2$ gives a bound:

$$
\begin{aligned}
& \text { [> 'abs(Snow(r*exp(I*0)))'=1/2; \%; } \\
& r \text { in }\{\text { solve }(\%, r)\} \text {; } \\
& \text { - ; } \\
& \text { S0:=8/9; ``= evalf(\%); } \\
& \text { 'abs(Snow(S0*exp(I*0)))': '\%'= evala(\%); } \\
& \left|\operatorname{Snow}\left(\mathrm{r} \mathbf{e}^{0}\right)\right|=\frac{1}{2} \\
& \left|\frac{\sqrt{1-r}-1}{\sqrt{1-r}+1}\right|=\frac{1}{2} \\
& r \in\left\{-8, \frac{8}{9}\right\} \\
& \text { S0 }:=\frac{8}{9} \\
& =0.88888888888889 \\
& \left|\operatorname{Snow}\left(\operatorname{S0} \mathrm{e}^{0}\right)\right|=\frac{1}{2} \\
& \text { > myRange:= 'r=0 .. S0, phi=-Pi/2 .. Pi/2'; } \\
& \text { plot3d(abs(Snow(r*exp(I*phi))), myRange, myPlotDefault, axes=boxed, color = "LightPink", }
\end{aligned}
$$

$$
\begin{aligned}
& \text { myRange }:=r=0 . . S 0, \phi=-\frac{\pi}{2} . . \frac{\pi}{2}
\end{aligned}
$$

```
abs(Snow(z)) for z = r*exp(I*phi) in right half plane
```


In cartesian coordinates one even has a nice rectangle, where $\operatorname{Snow}(z)<=1 / 2$ in size (and already covers the nasty $z=\exp \left(I^{*} P i / 6\right)=$ diagonal intersecting the UnitCirclele)

```
> myRange:='x = 0 ..S0, y = -2 .. 2';
    plot3d(abs(Snow(x+I*y)), myRange, myPlotDefault, axes=boxed, title="abs(Snow(z)) for z = x + y*I");
                            myRange := x = 0 .. S0, y = -2 .. 2
```


Using $1 / z$ if $4<|z|$ the left half plane is completely done (in the linear transformations the Taylor series around 0 will be used).
For the right half plane one uses $1 / z$ for $2<|z|$. Then two segments around the unit circle remain remain (see the graphics below), they are symmetric w.r.t. the x axis and the are treated in the rest of that note.
[> UnitCircle:=exp(I*phi);

For ϕ larger than $\phi 0=\arccos \left(\frac{8}{9}\right)$ a point on the circle will fall into the grey rectangle (see figure below), were Snow's method works. That covers the nasty point $e^{\left(\frac{\mathrm{I} \pi}{3}\right)}$

Using $1 / z$ for $2<|z|$ we also arrive in the grey rectangle (for points on that circle), if the angle is above $\phi 2$, given by the following condition:
> 'S0 $=\operatorname{Re}(2 * \exp (I * p h i 2))$ '; evalc(\%): isolate(\%,phi2); \#evalf(\%);

$$
\begin{gathered}
\mathrm{S} 0=\Re\left(2 \mathrm{e}^{(\phi 2 \mathrm{I})}\right) \\
\phi 2=\arccos \left(\frac{4}{9}\right)
\end{gathered}
$$

```
> plot([Re(UnitCircle),Im(UnitCircle), phi=-phi0 ... phi0], myPlotDefault, thickness=2, color=red):
    plot([Re(UnitCircle),Im(UnitCircle), phi=-Pi/2 ... +Pi/2], color="DeepSkyBlue"):
    plottools[rectangle]([0,-2],[S0, 2], color="WhiteSmoke"):
    plots[display](%%%,%%,%):
    plot([Re(2*UnitCircle),Im(2*UnitCircle), phi=-arccos(4/9) ... +arccos(4/9)], scaling=constrained,
    color="DeepPink"):
    plots[display](%%,%);
```


Between the grey rectangle and the exterior circle segment one can apply $z \rightarrow \frac{z-1}{z}$ (which is A\&S 15.3.9, Paff's transformation followed by $\frac{1}{z}$).
But only for those points which end up in the 'numerical' radius R0 for the Taylor series around 0 . For z towards 0 the transformed explodes, so one takes the closest point towards 0 in the region for which the transform still has to fine. That is $\mathrm{z}=\mathrm{S} 0+0$ * I and taking that as a minimal radius we get the needed angle:

```
- > as9:= z -> (z-1)/z;
    ''
    'R0 = eval(abs(as9(r*exp(I*phi))),r=S0)';
```

\% assuming phi:: real;
[solve(\%, phi)]; evalf(\%);

$$
\text { as9 }:=\mathrm{z} \rightarrow \frac{\mathrm{z}-1}{\mathrm{z}}
$$

$$
\begin{gathered}
\mathrm{R} 0=\left|\operatorname{as9} 9\left(\mathrm{r} \mathbf{e}^{(\phi \mathrm{I})}\right)\right| \mid \mathrm{r}=\mathrm{S} 0 \\
\frac{9}{10}=\sqrt{\left(\cos (\phi)-\frac{9}{8}\right)^{2}+\sin (\phi)^{2}} \\
{\left[\arctan \left(\frac{77 \sqrt{1271}}{2329}\right),-\arctan \left(\frac{77 \sqrt{1271}}{2329}\right)\right]}
\end{gathered}
$$

$$
[0.86722582630957,-0.86722582630957]
$$

Again just check through plotting the situation of applying $z \rightarrow \frac{\mathrm{z}-1}{\mathrm{z}}$ first and then using the Taylor series :

$$
\begin{aligned}
& >\text { 'abs(as9(r*exp(I*phi)))': '\%'=\% assuming phi::real; \#min(2, \%); } \\
& \text { plot3d(rhs(\%), r = S0 } \ldots 2, \text { phi }=-0.86 \ldots 0.86, \text { axes=boxed, myPlotDefault); } \\
& \qquad \left\lvert\, \operatorname{as9(ree^{(\phi I)})|=|\frac {-1+r\mathbf {e}^{(\phi I)}}{r}|}\right.
\end{aligned}
$$

Now we have covered almost all we need:

```
> plot([Re(UnitCircle),Im(UnitCircle), phi=-phi0 ... phi0], myPlotDefault, thickness=2, color=red):
    plot([Re(UnitCircle),Im(UnitCircle), phi=-Pi/2 ... +Pi/2], color="DeepSkyBlue"):
    plottools[rectangle]([0,-2],[S0, 2], color="WhiteSmoke"):
    P1:=plots[display] (%%%,%%,%):
    plot([Re(2*UnitCircle), Im(2*UnitCircle), phi=-0.86 ... +0.86], scaling=constrained, color=blue):
    plot([Re(2*UnitCircle),Im(2*UnitCircle), phi=+0.86 ... +arccos(4/9)], thickness=2, color="Pink"):
    plot([Re(2*UnitCircle),Im(2*UnitCircle), phi=-arccos(4/9) ... -0.86], thickness=2, color="Pink"):
    P2:=plots[display] (%%%,%%,%):
    plot([Re(r*exp(+I*0.86)),Im(r*exp(+I*0.86)), r=S0 ..2], linestyle=dot, color=blue):
    plot([Re(r*exp(-I*0.86)),Im(r*exp(-I*0.86)), r=S0..2], linestyle=dot, color=blue):
    P3:=plots[display](%%,%):
    plots[display](P1, P2, P3);
```


For the remaining region between the outer circle, the grey rectangle and the dotted radius one can use $z \rightarrow 1-\mathrm{z}$ to arrive at the case for Snow's series, the values will be small in magnitude:

```
> #r*UnitCircle;
    #1 - %;
    # 1/%;
    'abs(Snow(1 - r*UnitCircle))': '%'= %; #evalc(%) assuming ( 0<r, phi::real);
    plot3d(rhs(%), r = S0 .. 2, phi = 0.86 ... Pi/2, axes=boxed, myPlotDefault);
```

$$
\left\lvert\, \operatorname{Snow}(1-\mathrm{r} \text { UnitCircle })\left|=\left|\frac{\sqrt{\mathrm{r} \mathbf{e}^{(\phi \mathrm{I})}}-1}{\sqrt{\mathrm{r} \mathbf{e}^{(\phi \mathrm{I})}}+1}\right|\right.\right.
$$

What do I (currently) miss?
a) The proof for the identity 2F1 = formally recursive series
b) Convergence proof and insight for numerical stability (thus keeping below 8/9 or even $1 / 2$)

ᄃ >
$\ulcorner>$
ᄃ >

